See new food packaging & processing solutions at PACK EXPO in Chicago
Discover new food packaging and processing innovations from 2,500+ suppliers, all under one roof at PACK EXPO International in Chicago.

New technologies extend the life of legacy networks

Neither Ethernet nor fieldbus have all the answers for industrial applications. Suppliers and industry groups are working on ways forward that take into consideration the needs—and limitations—of the present.

Profinet, based on Ethernet technologies, integrates existing fieldbus systems. Source: PI North America
Profinet, based on Ethernet technologies, integrates existing fieldbus systems. Source: PI North America

Though Ethernet has been taking hold in a growing number of industries and applications, fieldbus is far from obsolete. Many thousands of legacy fieldbus networks will continue to be relied on in the years ahead. The cost to rip and replace these networks is a daunting one for any manufacturer. Besides that, legacy fieldbus networks have some unique advantages—such as ensuring intrinsic safety in hazardous environments—that many industrial Ethernet systems are not yet able to provide.

“Ethernet forms the backbone of any modern industrial network, but there are still places that some Ethernet systems cannot go,” explains Michael Bowne, executive director of Profibus and Profinet International (PI) in North America. “Four-wire Ethernet today still carries too much voltage and current on the wire to guarantee intrinsic safety. Currently, we’re working hard to develop a reliable, two-wire, IEEE-approved solution known as Advanced Physical Layer (APL) for hazardous environments.”

PI is investing in new technologies such as APL to help turn concepts like Industry 4.0 and the Industrial Internet of Things (IIoT) into a reality. The goal of APL is to bring Ethernet down to field-level instruments in hazardous areas. Taking process industries into the future requires a new network standard to transfer process data using standard Ethernet and IP-based technologies.

“Ethernet in the field level will make digitalization for process industries a reality,” Bowne says. “Ethernet adds its universality and bandwidth to existing field device installations.”

Current and voltage will be limited to provide an intrinsically safe system for Zones 0 and 1 / Div. 1, Bowne explains. The physical connection will be a rugged two-wire connection with power over the same two-wire cable. APL is expected to be able to exceed the 100m limit currently imposed on common 100Base-TX Ethernet networks.

“Although work is progressing, APL is still a few years out,” Bowne adds.

There are currently two flavors of Profibus—DP for factory applications and PA for process automation. A number of hybrid industries, such as food and beverage, combine both systems. Though they follow the same protocol, the two versions exist on different physical layers in the network stack.

One of the reasons for continued viability of legacy fieldbus networks is the growing incorporation of diagnostic tools and graphic interfaces that enable faster troubleshooting than traditional analog systems. “Downtime is extremely costly, particularly in process automation, and these diagnostic advances help companies significantly reduce costs and production losses without major capital investments,” Bowne says.

Though new factory installations typically incorporate Profinet, networks installed 10-15 years ago often employ a gateway Profibus and Profinet. “This enables companies to accomplish a piece-wise migration as needed,” Bowne explains. “By installing a modern PLC for the system, for example, they can also leverage the benefits of more insight into their data or higher process speeds and throughput without significant changes to the legacy fieldbus network.”

New industries for legacy networks

EtherCAT, a fieldbus that sends data via Ethernet, is seeing advances in adoption for different applications. “The semiconductor industry, for example, is moving rapidly to EtherCAT because it provides a stronger backbone, more communication bandwidth and greater speed,” says Bob Trask, the North American representative of the EtherCAT Technology Group (ETG). Other industries that have transitioned to EtherCAT include automotive, medical and biomedical device manufacturing, as well as entertainment, humanoid robotics and many advanced motion applications, he says.

The emerging Time-Sensitive Networking (TSN) standard, which provides real-time capabilities in IEEE 802 networks, is one area where EtherCAT is improving communications. “Using EtherCAT at the machine level and for interconnecting machines with TSN bridges creates a state-of-the-art industrial Ethernet network architecture,” Trask says. “Some complex machines, however, will still require an enhanced communication infrastructure. Integrating EtherCAT segments into a TSN network will combine the benefits of both technologies without requiring any changes to EtherCAT slaves. This adaptation, known as stream adaptation, is done by software at the EtherCAT master side. The TSN bridges will be able to route the EtherCAT frame with no modification to the bridge.”

Back to Basics: Understanding Conveyors for Food Processing
Discover how modern conveyors enhance food processing—boost efficiency, ensure safety, and save space. Explore the latest tech and tips to optimize your operations.
Read More
Back to Basics: Understanding Conveyors for Food Processing
Special Report: Essential tools for effective sanitation
Today’s food processors are faced with an ongoing labor shortage and pressure to increase production to meet market demands. That means less downtime for cleaning while adhering to strict food safety guidelines. How can a manufacturer overcome these hurdles to stay profitable?
Read More
Special Report: Essential tools for effective sanitation