NEW EVENT! Cutting-edge Trends for Food Products at PACK EXPO Southeast
Discover all the latest packaging & processing solutions for food products at the all-new PACK EXPO Southeast in Atlanta, GA, March 10-12, 2025

Priming the pump: How to select the right pumps

To achieve peak performance, food and beverage manufacturers are investing in pumps that offer versatility, durability, simple cleaning, energy efficiency and ease of maintenance.

Bailly LaPierre uses Mouvex's SLS Series Eccentric Disc Pumps to produce 4-5 million bottles of its sparkling wines a year, citing the gentle product handling, hygienic design and enhanced product-recovery capability as benefits. Photo courtesy of Mouvex.
Bailly LaPierre uses Mouvex's SLS Series Eccentric Disc Pumps to produce 4-5 million bottles of its sparkling wines a year, citing the gentle product handling, hygienic design and enhanced product-recovery capability as benefits. Photo courtesy of Mouvex.

Don’t underestimate the importance of pumps. Transferring food or beverage products from one area to another in a facility, pumps serve as the infrastructure for the manufacturing process. They play a crucial role in keeping production moving along efficiently by minimizing downtime, lowering lifecycle costs and maximizing productivity. That’s why food and beverage manufacturers carefully consider a variety of factors when selecting pump technology, including versatility, durability and reliability, sanitary design that simplifies cleaning, energy efficiency, and ease of maintenance. 

“If you imagine a process room, the pump is at the heart of it — just like the heart of the body,” says Bob Garner, engineering manager for Glendale, Wisconsin-based Ampco Pumps Company. “It’s the pump that basically delivers the beverage or food throughout the process room. Whether it’s through heat exchangers or filters or dispensing systems, the center of the process room is the pump. So if a pump goes down, the rest of the plant or room goes down.”

Of pump and circumstance

Application and rightsizing are some of the most important considerations in determining the appropriate pumping system for a facility, keeping in mind viscosity of the product, shear sensitivity, and pressure and flow rate. Centrifugal pumps and positive displacement pumps are the most common pump technologies in the food and beverage manufacturing industry. 

A centrifugal pump is often used to transfer water, oils and other low-viscosity products. The pump’s rotating impeller generates suction and uses that centrifugal force to thrust the fluid against the outer wall and force it out of the pump’s discharge port. A centrifugal pump not only allows operators to pump large quantities of fluid at a high flow rate, but they can also adjust the flow rate, making a centrifugal pump a versatile and energy-efficient option. 

Manufacturers that produce viscous foods typically use positive displacement pumps, such as rotary lobe pumps, progressive cavity pumps or diaphragm pumps. They all operate on the same principle: The cavity on the suction side of the pump expands, lowering the pressure and pulling in the product. The product is then carried around the lobes to the discharge side, where the cavity contracts, generating pressure. The difference in pressure pushes and pulls the product simultaneously, exerting force to create flow with no or low shear. That means it can maintain product integrity with gentle product handling. However, unlike a centrifugal pump, a positive displacement pump will produce the same flow rate independent of discharge pressure. 

Hygienic standards

Sanitary design is also an essential feature of any pumping system. Manufacturers should invest in pumps that meet standards set by 3-A Sanitary Standards, Inc., a nonprofit that advances cutting-edge hygienic equipment design and technology for the food, beverage and pharmaceutical industries. Pumps should also offer clean-in-place (CIP) capabilities that allow an operator to run a cleaning agent through the pumps to prevent contamination and bacterial growth. In addition, pumps should not have cast surfaces, crevices or nooks, which allow bacteria to harbor as well as inhibit drainability.

“Make sure that it can be fully cleaned,” says Michael Druga, president and CEO of Raleigh, North Carolina-based SinnovaTek, which develops and sells thermal processing equipment and pumps. “Meaning not just that you can run your caustic through it, but that any material or residue inside the body of the pump can get flushed out during the CIP cycle, making sure it can drain. You always want to make sure you can fully drain out the body of the pump.”

Anatomy of a robust pump

Durability is another key component of efficient pumps. To ensure reliability and lower lifecycle costs, Garner recommends that manufacturers purchase pumps made from the most robust materials they can afford. “You want to use the strongest materials available,” he says. “You want to make sure that all the components, bearings and gears are durable for the life of the pump.”

For example, while most food and beverage pumps are made from standard 316 stainless steel for corrosion resistance, Garner suggests purchasing some pump components consisting of heat-treated stainless steel or 17-4 PH stainless steel, which is more than twice as strong as 316 stainless steel. They can handle abrasive products, high temperatures and high pressure better than thinner materials, helping to prevent damage like shaft breakage and component contact from piping misalignment. 

The architecture of pumps should also be designed for strength and to diminish internal wear. Tight internal clearances are one of the most important factors that affect pump performance and total cost of ownership. “The clearance, or the distance between where the parts come into contact with the other parts, has to be tight. Otherwise you lose pressure and efficiency,” Garner says. “[It also affects the food product] because food could shear back through those loose clearances and damage the product.”

“You want tight clearance whenever you have a high-pressure application,” says Bob Wells, OEM sales manager for Middleton, Wisconsin-based Fristam Pumps. “You don’t want those shafts deflecting and rubbing internally inside the pump to wear it out.”

To further avoid shaft deflection, pumps should have balanced rotors and oversized bearings as well as short shafts with large diameters. “Shaft design, rotor design, bearings — those things lead to more durable pumps when they are rightsized for the application,” says Zach Suardini, application engineer for Fristam. “They help extend the life of the pumps and prevent premature failures and unplanned maintenance.”

INTRODUCING! The Latest Trends for Food Products at PACK EXPO Southeast
The exciting new PACK EXPO Southeast 2025 unites all vertical markets in one dynamic hub, generating more innovative answers to food packaging and processing challenges. Don’t miss this extraordinary opportunity for your business!
Read More
INTRODUCING! The Latest Trends for Food Products at PACK EXPO Southeast