Start 2026 at an Advantage in the Food Industry—attend PACK EXPO East!
Tackle new projects early in the year and find packaging and processing solutions for all types of foods, all in one trip to Philadelphia.

RFID R&D at MIT

It seems logical that the smartest minds should tackle the toughest challenges. That’s the mindset at the Auto-ID Labs of the Massachusetts Institute of Technology, Cambridge, MA.

Our recent visit here uncovers the group’s latest research and developments in RFID. The group is led by research director Daniel Engels and project director Rich Fletcher. The graduate students working on various projects are Alki Delichatsios, Uttara Marti, Rich Redemske, and Jonathan Wolk.

Tagging bottled water One of the toughest applications for RFID in packaging is said to be high-moisture products. MIT is pushing the envelope in one of its latest research projects by developing a UHF RFID tag for single-serve PET bottles of water. The goal is a tag that can be read at the item level at least two layers deep when cased in a 4x6 arrangement. The tag will be wrapped around the bottle like a label. Researcher Alki Delichatsios will be working on this project through summer 2006.

Air gaps and helpful metal Another project hopes to provide evidence that the words helpful and metal can be used together in conjunction with RFID. Researcher Uttara Marti has studied the effect of air gaps in RF performance. In summary, air gaps are good.

“In this case, metal is good,” observes Engels of research involving aluminum-foil-lined materials. Properly placed, these materials can direct the RF energy deeper within a pallet load to read tags on packages.

World’s first graphical simulation Implementation of graphical simulator, by researcher Jonathan Wolk, is claimed as the world’s first real-time visual 3-D modeling of reader-antenna and tags.

With the software simulation program, users can place a tagged box into a field and see how well it performs within the variables of antenna type; polarization; field strength; and tag placement on the box. Box contents can be air (empty), liquid, or aluminum. The view can be reoriented or zoomed in or out in 3-D.

Field probe update We also wanted to get a first-hand look and an update on MIT’s economical RFID field probe, which we covered in an article published in January. Developed by Rich Redemske, the 9’’x3’’field probe integrates an Electronic Product Code RFID tag emulator and a sensor probe.

Redemske has been working on increasing the probe’s read distance range. Initially it was 2 meters, currently it’s 3 to 4 meters, and the next goal is a range of 4-5 meters, or about 15 ft.

“Rich Fletcher and myself take a great deal of pride in the students for jobs very well done,” says Engels.

For further information on these MIT RFID projects, contact Dr. Daniel Engels at the Auto-ID Labs, 617/252-1490, www.mit.edu/auto-id.

For the complete article with pictures, see: packworld.com/go/c149

Shelf life solutions that work
See how processors extend product life from weeks to months using HPP, MAP, and advanced cold storage technologies.
Read More
Shelf life solutions that work
Kick off 2026 with Fresh Ideas for Foods. Register for PACK EXPO East!
Be the first to find what’s next in food packaging and processing at PACK EXPO East. Discover advances in sustainability, see solutions from 500 exhibitors and uncover new ideas for your industry and beyond—all in one trip to Philadelphia.
REGISTER NOW & SAVE
Kick off 2026 with Fresh Ideas for Foods. Register for PACK EXPO East!