Battle for Cybersecurity Spreads to Sensors

Even the lowest level of the Purdue model has become a target for hackers who want to attack manufacturing facilities. Automation vendors are scrambling to help users defend sensors and other intelligent devices.

Security routers and other appliances that can serve as firewalls need to be installed in industrial networks
Security routers and other appliances that can serve as firewalls need to be installed in industrial networks

The Industrial Internet of Things (IIoT) is proving to be a double-edged sword for sensors. Sure, the connectivity that it brings is simplifying their installation and streamlining the distribution of collected data. But the IIoT has also made it easier for hackers to use sensors to break into industrial networks and cause trouble.

Another reason that sensors and other intelligent devices have begun to capture the attention of hackers is that most of these devices have not been designed for cybersecurity. Add to that the fact that they are designed to collect and pass along data within a network. “Vulnerabilities in these devices could give hackers the means to hijack a session, change the data or modify data collection patterns in a way that might deceive the end-consumer—be it a person or a machine,” says Dave Weinstein, vice president of threat research at cybersecurity supplier Claroty.

Vulnerabilities fall into two basic categories. The first is software bugs that hackers can exploit to launch attacks either internally against the control network itself or externally against some other target. The second category of vulnerabilities is the hardware. It is possible to launch an attack by manipulating the physical properties of the hardware itself, such as by using acoustics or electromagnetic waves to mount transduction attacks that spoof data.

“Hardware vulnerabilities, while scarier, are less common,” Weinstein reports. “The majority of incidents relate to software bugs—and these are far easier to fix than hardware vulnerabilities.”

Even so, these vulnerabilities can pose serious threats to manufacturing operations. “Attackers aren’t targeting credit card numbers or other personal information,” observes Eric Braun, engineering director for applications, gateways, and security at Emerson Automation Solutions. When it comes to attacks on industrial control systems (ICSs), many of the perpetrators are looking to cause physical damage. For evidence, Braun points to the Triton malware discovered at a petrochemical plant back in 2017, which took aim at the facility’s safety system.

The most likely vector for a hacker to launch an attack on a sensor or like device would be from the higher, Internet-facing layers of the Purdue reference model. Such attacks have typically begun with some sort of phishing scheme. “Attackers will target individuals and attempt to get them to open a malicious attachment or click on a malicious link,” Braun explains. “These actions will allow the attackers to steal credentials, navigate through the network, and work their way down to the lower layers of the Purdue model.” In a segmented network with firewalls protecting each segment, however, it is unlikely that a hacker would drill that deeply into a network.

 

A new attack vector

What is more likely these days is for hackers to attack sensors that are no longer at the bottom of the hierarchy outlined in the Purdue model. Today’s IIoT devices communicate directly with whatever or whoever needs the data that they are exchanging. With this kind of connectivity, a drive for a welding robot, for example, could be transmitting utilization data to the robot’s builder via the cloud. “It could be saying that, based on my duty cycle, I’m going to need to have a particular part replaced in approximately 17 days and four hours,” says Dan Schaffer, product marketing manager at Phoenix Contact.

As helpful as this exchange of data can be for maximizing performance and uptime, the robot is talking directly to the Internet rather than going through a conventional control hierarchy. This direct communication circumvents the several layers of firewalls that would exist between the logical segmentations of a secured network following the Purdue model or security standards like ISA99 and IEC 62443. “If there is a flaw in the robot’s operating system, it could allow the robot to be the victim of a buffer overflow or some sort of other communications attack,” Schaffer notes.

Such vulnerabilities can sneak up on users who initially designed the network security of their manufacturing operations around the Purdue or other model. “These users think that they are adhering to the model, but really aren’t,” Schaffer says. “They think that they are following best practices but aren’t.”

Among the devices lulling users to let their guards down in this manner are the IP cameras that are appearing just about everywhere these days. “Visual imagery is becoming a key stream of data for processes,” Schaffer says. “Cameras are cheap and easily deployed technologies that give you immediate visibility into what’s going on at a given location.” Because these devices were typically not designed with network security in mind, video streams transmitted over the Internet from remote locations can easily be an attack vector.

Dairy Food & Beverage Innovations Report
Discover cutting-edge packaging and processing solutions in the inaugural Packaging World/ProFood World Innovations Report. From high-speed filling machines to mono-material lids, see how the latest advancements from PACK EXPO International 2024 are driving safety, sustainability, and extended shelf life—shaping the future of dairy food and beverage packaging.
Access Now
Dairy Food & Beverage Innovations Report
Proteins Innovations Report
Discover cutting-edge protein packaging innovations from PACK EXPO International 2024! Our editorial team spotlights hygienic equipment and materials designed for the demanding protein sector. From IP66-rated washdown systems and all-servo chub packaging to advanced auto-bagging technology and compostable trays replacing EPS, this report reveals how manufacturers are addressing clean, safe design while improving efficiency.
Take Me There
Proteins Innovations Report