The Cool Factor: What to Look For in Efficient Freezing and Chilling Equipment

Industrial refrigeration achieves efficiency without sacrificing performance thanks to advances in automation, safety, and sustainability.

raspberries in cryogenic tunnel freezer
Cryogenic refrigeration can reach substantially colder temperatures and chill products much faster than mechanical refrigeration.
Photo courtesy of Air Products.

Industrial refrigeration has long been an effective way to protect the quality and safety of perishable foods. Freezing and cooling equipment have been vital to helping manufacturers extend product shelf life while preserving flavor and texture. Over the last few years, food manufacturers have been able to further reap the benefits of industrial refrigeration thanks to advances in automation, safety, and sustainability, which have helped to improve the performance and efficiency of today’s freezing and cooling equipment.

“The demand in the marketplace for frozen and chilled foods has dramatically increased and so has the demand for refrigerated distribution systems,” says Andrew Pipkin, director of project development at Stellar, the Jacksonville, Fla.-based design-build firm. “As families trend toward spending more time—valuable time—with family members versus preparing meals, we’ve seen the marketplace trend heavily toward the frozen and chilled food sector and prepared food sector.”

Starting point

As frozen and chilled foods continue to increase in popularity, manufacturers are looking to meet those growing production demands with freezing and cooling equipment that can maximize efficiency and boost capacity and throughput. When selecting industrial refrigeration equipment, manufacturers should primarily consider lifecycle costs, which assess long-term reliability, efficiency, and performance of the equipment to deliver optimum return on investment, according to Pipkin. Processors should not only keep in mind the initial capital outlay, but also analyze the costs of operating the equipment over its lifespan, including energy consumption, maintenance costs, repairs, environmental impact, regulatory compliance, potential equipment downtime, and labor costs.

Pipkin recommends that manufacturers conduct a cooling load calculation. Industrial refrigeration works most efficiently when it operates at a full load, but that rarely occurs. A cooling load calculation evaluates if the freezing or cooling equipment can efficiently remove heat while maintaining temperature setpoint conditions. It prevents manufacturers from missing productivity benchmarks, as well as helps them avoid process inefficiency and wasting energy.

“It’s very important to have a proper load calculation done, taking into account all considerations for not only the peak performance, but the average performance as well as the lower-scale performance,” Pipkin explains. Refrigeration systems are typically designed for that one or two hottest days of the year in order to be able to reject the necessary amount of heat under the most strenuous conditions, he adds. “Every other day it’s running at something less than peak capacity just because it doesn’t have to work as hard to be able to reject the heat on those other days.…And that’s a lot of the challenge in refrigeration. You [must] have that turndown capability in order to not have the short-cycling issues and premature equipment failure. Looking at the big picture and designing for the low load scenario an owner might face is just as important as designing for peak load capacity. Low load conditions can be much more common and, therefore, have a higher impact on energy consumption than peak capacity for some systems.”

Drive for efficiency

To ensure freezing and cooling equipment operates efficiently, many industrial refrigeration experts suggest applying variable frequency drives (VFD) to the equipment. VFDs can slow down the speed of the equipment, helping to reduce energy costs and extend the service life of the equipment. But VFDs can also easily ramp up the freezer or cooling equipment if it is at full load. For example, VFDs on condenser fans can control the floating head pressure. Lowering the floating head pressure via the VFD reduces the energy consumption for the condenser fan motors and compressor motors. VFDs can also improve overall efficiency on other areas of a refrigeration system, including evaporator fan motors and pumps.

VFDs can also help manufacturers cool or freeze various products by modifying the airflow for each product. For example, if a processor freezes thick half-pound hamburger patties, it can’t use the same velocity of airflow to freeze thinner sausage patties because the airflow would blow the patties off the conveyor. With a VFD, an operator can easily adjust the speed of the fan to freeze the patties at the proper velocity, speeding up changeover. “The benefit of a VFD is that it can regulate the airflow, so it doesn’t blow product all over the place,” says Paul Osterstrom, senior vice president of marketing and sales for Advanced Equipment Inc., a supplier of freezers and chillers based in Richmond, British Columbia, Canada. “VFDs make the machinery more flexible for whatever product you’re running.”

“This is something we encounter more and more because our customers are running many different products in one freezer. It’s sometimes 10 to 20 different products, and they don’t need the same airflow,” says Mathieu Nouhin, product manager at Dusseldorf, Germany-based GEA. “We add frequency inverters on the fan motor so we can optimize the airflow for product, selecting the right speed for the fans and then saving energy, too.”

On the safe side

recirculating CIPMany types of cooling and freezing equipment use recirculating clean-in-place (CIP) systems, which clean the equipment multiple times and recycle the cleaning solution during the CIP process. It ensures thorough cleaning and saves on water consumption.Photo courtesy of Advanced Equipment Inc.Manufacturers are also requesting more food safety features from their industrial refrigeration equipment. For example, suppliers are designing their equipment with nonhollow structures and welded construction. Unlike equipment that uses bolted construction or caulked joints, welded construction does not have harborage points for bacteria to grow. In addition, some manufacturers are elevating their industrial refrigeration equipment off the floor with fully-welded pins rather than plates, which can trap dirt and bacteria. And freezing and cooling equipment today often has open profiles to allow workers to easily access and clean it.

According to Osterstrom, the design and materials of the freezing and cooling equipment are key to ensuring food safety: “If you don’t have a freezer designed to be cleaned properly, it really doesn’t matter how good of a CIP (clean in place) system you have. If you don’t design a way that prevents food from being trapped and reduce the number of welds, reduce any of porous structure, or reduce bolts and those types of things, then it really still doesn’t get clean. So it is a combination of a CIP system and a freezer that is designed for cleaning.”

Suppliers are augmenting the CIP features of their freezing and cooling equipment. For example, GEA and Advanced Equipment offer recirculating CIP systems, which clean the equipment multiple times and recycle the cleaning solution during the CIP process. The solution is filtered before it is reinjected back into the equipment for further cleaning. This CIP system ensures the equipment is cleaned thoroughly without using inordinate amounts of water, resulting in significant water savings.

Some manufacturers like meat processors require an extremely high level of hygiene, so they use heat treatment or pasteurization systems in conjunction with CIP. After the CIP process is completed, the heat system raises the temperature inside the cooler or freezer to about 170°F to kill any remaining pathogens that the CIP system may have missed. However, the heat treatment is only effective for freezing and cooling equipment that use welded construction.

“This is only possible with fully welded enclosures,” Nouhin says. Some freezer providers use insulated panels, which are assembled with caulked joints, he states. “These caulked joints can resist a maximum temperature of 140°F, which means you cannot reach the pasteurization temperature. But with the fully welded enclosures, there are no caulked joints or silicone joints. So we can increase the temperature and reach the pasteurization temperature of 170°F to make sure all the bacteria are killed.”

Proteins Innovations Report
Discover cutting-edge protein packaging innovations from PACK EXPO International 2024! Our editorial team spotlights hygienic equipment and materials designed for the demanding protein sector. From IP66-rated washdown systems and all-servo chub packaging to advanced auto-bagging technology and compostable trays replacing EPS, this report reveals how manufacturers are addressing clean, safe design while improving efficiency.
Take Me There
Proteins Innovations Report
Dairy Food & Beverage Innovations Report
Discover cutting-edge packaging and processing solutions in the inaugural Packaging World/ProFood World Innovations Report. From high-speed filling machines to mono-material lids, see how the latest advancements from PACK EXPO International 2024 are driving safety, sustainability, and extended shelf life—shaping the future of dairy food and beverage packaging.
Access Now
Dairy Food & Beverage Innovations Report